skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bard, Jonathan E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Elkins, Christopher A (Ed.)
    ABSTRACT Municipal wastewater harbors diverse RNA viruses, which are responsible for many emerging and reemerging diseases in humans, animals, and plants. Although genomic sequencing can be a high-throughput approach for profiling the RNA virome in wastewater, wastewater processing methods often influence sequencing outcomes. Here, we systematically evaluated two wastewater processing methods, tangential-flow ultrafiltration (TFF) and Nanotrap Microbiome A Particles, for detecting the target RNA virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via amplicon sequencing and characterizing the RNA virome using whole-transcriptome shotgun sequencing. Our results from paired comparison tests showed that the TFF and Nanotrap methods recovered similar SARS-CoV-2 variants at the lineage level (analysis of similarity [ANOSIM]R= −0.012,P= 0.874). Optimizing automated procedures for the Nanotrap method and concentration factors for the TFF method was critical for achieving high-depth and high-breadth coverage of the target virus genome. Notably, the two methods enriched distinct RNA viromes from the same wastewater samples (ANOSIMR= 0.260,P= 0.002), with TFF samples showing 22-fold and 7-fold higher relative abundances ofReoviridaeandCoronaviridae, respectively. These differences are likely due to the distinct virus concentration mechanisms employed by each method, which are influenced by liquid-solid partitioning of virus particles and interactions of viral surface proteins with ligands. Our findings underscore the importance of optimizing wastewater processing methods for genomic monitoring and have implications for broader environmental applications.IMPORTANCEWastewater genomic sequencing is an emerging technology for tracking viral infections within communities. However, different methods for concentrating viruses and extracting nucleic acids can influence the recoveries of RNA virome from wastewater. An in-depth understanding of virus concentration mechanisms and their impact on sequencing data quality and bioinformatic output would be critical to guide method selection and optimization. Specifically, this study systematically evaluated tangential-flow ultrafiltration and Nanotrap microbiome particles for their application to sequence SARS-CoV-2 and whole RNA virome from wastewater. Both methods yielded high-quality sequencing data for amplicon sequencing of SARS-CoV-2, but their outcomes diverged in the recovered RNA virome. We identified RNA viruses that are preferentially recovered by each of these two methods and proposed considerations of method selection for future studies of wastewater RNA virome. 
    more » « less
    Free, publicly-accessible full text available August 29, 2026
  2. The COVID-19 pandemic has prompted an unprecedented global effort to understand and mitigate the spread of the SARS-CoV-2 virus. In this study, we present a comprehensive analysis of COVID-19 in Western New York (WNY), integrating individual patient-level genomic sequencing data with a spatially informed agent-based disease Susceptible-Exposed-Infectious-Recovered (SEIR) computational model. The integration of genomic and spatial data enables a multi-faceted exploration of the factors influencing the transmission patterns of COVID-19, including genetic variations in the viral genomes, population density, and movement dynamics in New York State (NYS). Our genomic analyses provide insights into the genetic heterogeneity of SARS-CoV-2 within a single lineage, at region-specific resolutions, while our population analyses provide models for SARS-CoV-2 lineage transmission. Together, our findings shed light on localized dynamics of the pandemic, revealing potential cross-county transmission networks. This interdisciplinary approach, bridging genomics and spatial modeling, contributes to a more comprehensive understanding of COVID-19 dynamics. The results of this study have implications for future public health strategies, including guiding targeted interventions and resource allocations to control the spread of similar viruses. 
    more » « less
  3. NA (Ed.)
    The sequencing of human virus genomes from wastewater samples is an efficient method for tracking viral transmission and evolution at the community level. However, this requires the recovery of viral nucleic acids of high quality. We developed a reusable tangential-flow filtration system to concentrate and purify viruses from wastewater for genome sequencing. A pilot study was conducted with 94 wastewater samples from four local sewersheds, from which viral nucleic acids were extracted, and the whole genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was sequenced using the ARTIC V4.0 primers. Our method yielded a high probability (0.9) of recovering complete or near-complete SARS-CoV-2 genomes (>90% coverage at 10× depth) from wastewater when the COVID-19 incidence rate exceeded 33 cases per 100 000 people. The relative abundances of sequenced SARS-CoV-2 variants followed the trends observed from patient-derived samples. We also identified SARS-CoV-2 lineages in wastewater that were underrepresented or not present in the clinical whole-genome sequencing data. The developed tangential-flow filtration system can be easily adopted for the sequencing of other viruses in wastewater, particularly those at low concentrations. 
    more » « less